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1. INTRODUCTION

Solving the equations governing inviscid fluid mechanics is not

an easy task - essentially because the system is non-linear. In addition ,

in steady flow past blunt bodies various regions differ from each other

mathematically - the subsonic flow at the front of the body is governed

by elliptic partial differential equations while the same set of

equations become hyperbolic farther downstream .
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Fig. 1

Because of the difficulty in obtaining analytic solutions there were

developed , in the 1950 ’ s, a number of numerical methods. Two of the

better known ones were the method of Integral Relations due to

Do rodni tsyn and Belotserkovskii  [11 and the Inverse Body Method of

Garabedian [2]. Both are usually used in the subsonic region only

wi th the method of characteristics being employed for the supersonic

flow . These two algorithms are efficient from the point of view of
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speed of calculation and core memory requirements. They do , however ,
encounter difficulties in two areas: near the sonic point and at the

expansion corner (see Fig. 1). Since these methods solve the steady

flow equations they cannot be applied to truly time dependent problems -

such as the diffraction of a shock wave by the bow wave of a body in

supersonic flight . In the 1960’s Lax and Wendroff [3], Richtmyer [4]

and others developed finite-differences algorithms of second order

accuracy for solving the time dependent equations. In principle these

methods possess several advantages: the ability to treat time dependent

problems , the ability to include shock waves without special treatment

and the fact that the whole flow field is governed by hyperbolic

partial differential equations .

It is also found that the sonic line region and the expansion

corner do not present any difficulty to these types of computations.

The major disadvantage of these algorithms is having an additional

dimension (time) - thereby increasing the computation time . The

length of computation depend s on the time step , At , which the

algorithm allows without causing numerical instabilities. Thus , where

possible , it is desirable to devise algorithms with larger allowable

time step . Zwas [5] has modified the Richtmyer two step method so

that At is increased by 40% in two-dimensiona l calculations and by

70% in three dimensions . Flows containing shock waves are subject to

little understood non-linear numerical instabilities. Harten and

Zwas [61 show how to deal with this problem by employing the Shuman

filter. Goldberg , Gottlieb , Turkel and Abarbanel [7], [8], [9], [10],

developed a number of algorithms for achieving high order accuracy
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(4th order and more) and also considered the theoretical problems

connected with apply ing boundary conditions at moving boundaries (e.g.

the Rankin-Hugoniot conditions at a shock wave).

The specific problems solved in this report are as follows :

1. Supersonic flow of ideal gas past two dimensional bodies at zero

angle of attack. The bodies are blunted wedges connected to

straight afterbodies (see Fig. 1). The calculations were carried

out for a range of Mach numbers , 2 ~ M ~ 4, and for various

values of the wedge angle.

2. Supersonic flow past two dimensional bodies at various angles

of attack .

3. Supersonic flow past blunted bodies of revolution such as blunted

cone followed by a circular cylinder afterbody (see Fig . 1).

4. A 3-D calculation of the flow past an axisymmetric body. While

this problem is not truly axisymmetric the calculation was carried

in 3-D and the results compared well with the axisymmetric computations

for the same body. [These results encourage us to attempt truly 3-D

problems.

In Section 2 are presented the partial differential equations for

the various cases; Section 3 describes the numerical scheme; the

boundary and initial conditions treatment is given in Section 4 and

Section 5 discuss es the numerical results. 
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2. THE EQUATIONS OF MOTION

(i) Two Dimensional Flow

The Euler equations for the time dependent flow of inviscid ,

compressible fluid are :

+ j j(pu )  + ~~(~v) = 0 (Continuity) (2.1)

~~ (pu) + ~~ (pu 2 +p) + ~~ (puv) = 0 (x-momentum) (2.2)

+ .5~_ .(pvu) + .~L(pv 2 +p) = 0 (y-momentum) (2.3)

+ ~~[u(E+p)] + *[v (E+pfl = 0 (Energy equation) ( 2 . 4 )

where u , v , p ,  p ,  E are , respectively, the fluid velocity in the

x-direction , f lu id  velocity in the y-d i rec t ion , the dens i ty ,  pressure

and total energy ( internal  plus kinet ic  energies)  per uni t  volum e of

the fluid at the point (x, y) at time t. We still have to

characterize the fluid through its equation of state . We ’ll consider

ideal gases for which

E + ~.p(u 2 + v2) (2.5)

or , solving for p,

p (y- l)[E - ~.p ( u 2 + v2)J (2.6)

where y is the ratio of specific heats at constant pressure 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and volume respectively. For hypersonic flow , for example , one wou ld

have to u se a d i f f e r e n t  equa t ion  of s t a t e .

The above system of p a r t i a l  d i f f e r e n t i a l  equat ions  is wr i t ten  in

divergenceless form . In vector notation it may be written as

( 2 . 7 )
a t ax ay

with  the vectors W , F and G g iven by

(2.8)

p 
- 

- i n  - n

m ~~~3) m 2 - ( y - l ) ( E - ~~~) -

2p 2p p
W =  ; F =  ; G =

- 
(y 3) n 2 - (y - l ) (E-~ -—)p 2p Z p

E ~~~~~~~~~~~~ m(m 2 + n 2) - ~~~~~~~~~~~~ n(m 2 +n 2) - I~!1
— L2~

2 2p 2 p 
—

and where m pu and n = pv .

( ii )  Three Dimensional Flow

r . The conservation equations are of the form :

( 2 . 9 )at 3x ay az
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where

- 

- m

m (
p

3) m 2 - (y-l) (E~
n
~~~~)

W n ; F =  - 1  ( 2 . 1 0 )

m~p

E (‘r 1) m(m 2 +n 2 + & 2 )  -

2p 2 p

- n  -
~~~~~~

-~~~&p p

G = (~~~3) n 2 - (Y~~l ) ( E ~ m~~~~
2

) ; H = - (2.11)

(y-3) ~ 2 - ( Y _ l ) ( E _ m 2
~~~

Z
)

2P

~~‘ f l  n ( m 2 +n 2 +~~2) - (Y - l )  t ( m 2 +n 2
~~9..2)

2p 2p 2 p

where now

p (y - l )  [E - ~.p (u2 +v 2 +w 2) ] (2 . 12 )

pw ( 2 . 1 3 )

and w is the velocity component in the z direction .
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(iii) cylindrically Symmetric Flow

We get this case from the 3-D equations (2.9) - (2.13) throug h

the s u b s t i t u t i o n

x = x , y = r sin 8 , z = r cos 0 , (2.14)

and by going from the velocity components u , v , w to velocity

components in the x , r , e d i rec t ions - i.e. u~~ Ur and

respectively. Since we assume cylindrical symmetry , we may as well

assume u0 = 0 and label u~ and U r by u and v respectively.

All variables now depend on t , x and r = 4~2 + z2. As a consequence

of this transformation we get the following system of equations:

+ -~j(rPu) + -~~-(rpv) = 0 ( 2 . 1 5 )

.
~~(rpu) + ~—[r(pu2+p)] + .~L(rpuv) = 0 ( 2 . 1 6 )

.E (rPv) + -~~(rpv u) + .~j z~[r(pv 2+p)] = p (2.17)

~~(rE) + ~~-[ru(E+p)] + ~~[rv(E+p)] = 0 . (2.18)

Notice the inhomogeneous term in Eq. (2.17). The vector form of this

system is

~~~(rW ) = ~— (rF) + .~ — ( r G )  + S (2.19) 

.— —.- -- - - -~ . - , -~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where the pressure is again defined as in (2.6) and the nonhomogeneous

term vector , S, is g iven by

= 

(:) 

. (2.20)

The vectors W , F and C are the same as those given in Eq. (2.8).

If we label W’ rW we see immediately that rF(W) = F(W’) and

rG(w) = G(W’). Let F ’ F(W ’) = rF and G ’ G(W’) = rG; i.e.

F’ and G’ are the same vector functions of W’ = rW as F and C

were of W . Thus our task becomes the solution of the system

= ~~ + .~~~~~_ + S (2 21)at  ax

3. THE FINITE DIFFERENCE SCHEMES

In all cases described herein the algorithm s used are based on a
I

two step scheme a la Zwas and Burstein (5], [11], [12]. In the  two-

dimensional and cylindrically symmetric cases the schemes use 9

computational points in a 3 x 3 net . In the 3-D case we require

27 points constituting a 3 x 3 x 3 cube.

We now present the schemes , their linear stability criteria and

the way we use the Shuman filter to prevent non-linear instabilities.
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(i) The Two-Dimensional Case

The vectors W(x , y, t), F(W(x , y, t)) and G ( W ( x , y, t ,)) are

approximated by discretized vectors. Thus W
~~k 

= W(jAx , kA y, t~)=W(x ,y,t)

where ~x , ~y and At~ are the step sizes in the finite difference net.

Similarly F’~ k 
= F(W’~ k~ 

and G” k 
= G(W~ i,) .  We shall take3 ,  3~ 3 ,  3 , r..

= ~x = constant , but t~t~ may vary. The number of time steps
n

required to reach the time t~ is n ; i.e. t~ ~ 
A t m .m= 1

The basic finite difference scheme approximating the system (2.7)

is given by:

~~ A ~~ ,~,n ,~nW = W  + —[F - F  + G  - G
2 j+l ,k+~ j,k+~ j+~- ,k+1 j+4,k

(first step) (3.1)

n+l  n ~~~~ ~n+~W = W + A [F - F + C - C . ]  (second step ) ( 3 . 2 )
j,k ~,k j+k,k j-~ ,k j,k+~ j,k-~

where .

A = At/Ax = At /Ay (3.3)

-n n n n n
W I[W + W + W + W 3 ( 3 . 4 )
j+~ ,k+f 4 j+1 ,k+1 j+1 ,k j,k+1 j,k

1 ~ n
F = F(—(W + W ) )  ( 3 . 5 )
j+1 ,k+~ 

2 j~ 1 ,k+l j+1 ,k



- 10 -

~ 
n+~F = F ( — (W + W ) )  (3.6)2 j+k,k+k

1 ~ n
C = G(— (w + w ) )  ( 3 . 7 )
j+~ ,k+1 2 j,k+l j+l ,k+l

n+i 1 ~~ fl+~
= G(— (w + W ) )  , (3.8)

j,k+k 2 j+3- ,k+~ j- k, k+k

with similar expressions holding for discrete vectors with different

subscripts.

The criterion for the numerical (linear) stability of the scheme

(3.1) + (3.2) constrains the time step to be (see Ref. [11]):

Ax
A t  ~ _____ (3.9)

c + 2 +

where c = (y p / p ) ~ is the speed of sound . In practice , one has to check

all the involved qualities at each grid point and select the minimum of

the right hand side of Eq. (3.9) over all j and k. Thus , we use

Ax
= t~~1- t~ ~ (3.10)

max [c~ +/(u~ k~
2
~~~~ 

) 2 ]
j k  ~ ~~~‘

_ _ _ _
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(ii) The Cylindrical Symmetry Case

For the sake of convenience we shall drop now the primes of the

vectors W’, F’ and G ’ appearing in Eq. (2.21) and the discretized

approximations of these vectors will be

k = W’ (jAx , kAr , t ) = rW(jAx , kAr , t ) where , as before Ax Ar3, n
is the grid size while t~ = 

~ ~~~ As before , we define
m=1

F
~~k 

= F(W ’ (j A x , kAr , ta)) = F(W
~~k
) and similarly for G’ .

The basic scheme representing Eq. (2.21) is given then by:

• fl+~ ~n A ,.~n ~~ ,~n AtW = W + —[F -F +~~ -G 
~~

-2- S (3.11)
j+~

.,k+k j+~ ,k+~ j+l ,k+-~ j,k+~ j+k,k+l j+~ ,k

(first step)

n+l n ..,,n+k ~~~ ~,n+k ~n+~W = W + X [ F  -F +G -G I + At S (second step) (3.12)
j,k j,k j+~ ,k j-k,k j,k+k j,k-k

where

i n n n n
S = —(S + S + S + S 3 (3.13)
j+~ ,k+~ 

‘~ j+l ,k+l j+l ,k j,k+1 j,k

~~~~~ 1 fl+~ fl+~~ fl+~~ fl+~~
S — —[S + S  + S  + S  3 (3.14)
j,k ~ j+&,k+~ j+~ ,k-k j-~ ,k+~ j-k,k-~

S — S(W ) . (3.15)
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The expressions for F
~+l k + ~ ‘ 

~~~~~~~~~~~~~ 
etc. are

the same as in the cartesian case , Eqs. (3.5)-(3.8). The inhomogeneous

vector S does not e f f e c t  the (linear) numerical stability and the

stability condition remains as in Eq. (3.10).

(iii) The Three Dimensional Case

The various difference expressions for this case are obvious

extensions of the two-dimensional ones. The basic finite difference

scheme approximating the system (2.9) is given by:

• fl+ ~n A ~n
W = W  + — [ F  - F

2 j+1,k+~ ,.~+~

,~,fl
- G + H  - Fl  3 - :

j + -~- ,k+l ,~~+k ~~~~~~~~~ j + f , k+~~, 2+ l

(first step) (3.16)

n+1 ~~~~~~~~ ~~~ ~n+~
= W  + x[F - F  + G  - G

~~~~~~ ~~~~~~ j,k+-~- ,t

+ H - H 3 (second step) (3.17)

where A = At/Ax = At/Ay = At/A z (3.18)

W = — 1W + W  + w
8 j+l ,k+l ,Q~ j+1 ,k,~ j,k+1 ,~ j,k,2

3 (3.19)
j+1 ,k+1 ,~ +l j+1 ,k,L+l j,k+l ,t+l j,k,L+1

~~~~ ~~~
——

~~~
—---- .-

~~~~~~~ ~~~~~~
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1 n fl n n
F = F(~-(W +~~ +W ) )  ( 3 . 2 0 )
j+l ,k+~ ,&+-~ j+l ,k+l ,&+l _i+l ,k+l ,t j+l ,k,~ +1 j+l ,k ,L

1 n+~ n+~F = F(~-(W + W + w + w ) )
j+ 1,k,t j+~ ,k+~ ,&+-k j+~

.,k+k,&-k j+~ ,k-~ ,&+k
(3.21)

n n n n
C = G(—(W + W + W + W ) )
j+~ ,k+1 ,&+-k 

4 j+1 ,k+1 ,~ +l j+l ,k+l ,& j,k+l ,t+1 j,k+l ,L (3.22)

~ ~~~~ n+k n+~ n~ i
C = G ( 1(W 

+~~~ +~~~~ + W  ) )
j,k+k ,2~ j+~ ,k+-~,&+k j+~- ,k+~ ,L-k j-k,k+k ,t+k

( 3 . 2 3 )

1 n n n n
H = H(—(W + W + W + W
j+f,k+f,&+l 4 j+l ,k+l ,~ +l j+1 ,k,L+1 j,k+l ,L+l j,k,~ +l

( 3 . 2 4 )

1 ~~ ~~ n+~H = H(—(W + W  W +~~~ ) ) ,
4 j+f,k+f,~ +f j+4,k-f ,t+~ j-f,k+~ ,t+k j-+ ,k-f ,t++

(3.25)

with similar expressions for different subscripts. By anology to (3.10)

the largest time step allowable under the (linear) stability criterion is

= tn+1 
- tn 

~ .rn
~
x t C

~~k L  
+

( 3 .2 .6)

~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~ 
j , - - - .-  -~~~~ -~~~~~ -~~~~~
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(iv) The Treatment of Shock Waves by an Automatic Numerical “Switch”

In most of the flow field , the 2-D and 3-D algorithm - Eqs.(3.1)+

(3.2) and (3.]6)+(3.l7) and the cylindrical symmetry algorithm - Eqs.

(3.ll)+(3.12) - give results which are linearly stable and which are of

• second order accuracy. In the vicinity of shock waves and stagnation points

there exists (for different reasons) the danger of non-linear numerical

• instability. Harten and Zwas , [6]. , ameliorate this phenomenon by a

modified application of the Shuman f i l t e r .  Usual ly  (see Vliegenthar t  [13])

the filtering is applied to the whole flow field and this reduces the

accuracy of the algorithm to first order. If , however , the filtering is

done only in the immediate vicinity of a shock wave , then the non-linear

instability is usually prevented while the accuracy of the computation in

the rest of the flow field remains of second order.

In the two-dimensional and the cylindrically symmetric cases

one proceeds as follows :

n+l _n
W = L W  (3.27)
j,k j,k

n+l x n+l f l+ j  x n+l n+l
W = W  + _ [

~~ (W - W  ) - o  (W - W  )]
j,k j,k 4 j+k,k j+l ,k j,k j-~ ,k j,k j-1 ,k

~ 
y n+l n+l y n+l n~l

+ — [0 (W - W ) - 0 (W - W ) ]  . (3.28)
‘~ j,k+-~ j,k+l j,k j,k-~ j,k j,k-1

Where the operator L is the scheme (3.l)+(3.2), or in the cylindrical

symme t ry cas e , the scheme ( 3 . l 1) + ( 3 . l 2 ) .  The “ switches” 0y, 0 X

are defined as follows:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _____  

1-
- - ~~~~~~--—-—- — - ------ -~~ - --~~~~~~ .- - -- - —  ~~ --~—~-—~~
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r I~ 
p

o = 
j~ 1’k J’!~ I , (3 .29 )

j+k,k L max p - p
j,k 3+l ,k j,k

r Ip
= 

j,k+l j,k (3.30)
I max p - p
I.. j,k j,k+1 j,k

Near shock waves , or other regions of very strong gradients , the

expressions in the square brackets in (3.29) and (3.30) are of order

unity and then O~~, 0Y x and the filtering defined by (3.28) becomes

operative. Away from the shock-wave , the flow is smooth and O~~>’ O[(~X)
m ] .

n+l n~lThus , for m ~ 1, in the smooth regions t~ = W + 0(6x2) at least;
j,k

i.e. second order accuracy is preserved. In practice , one uses the

scheme (3.27)+(3.28) with the 0
X~~~ and O~~’S substituted from (3.29)

and (3.30). Because of linear stability requirements we are constrained

to use 0 < x ~ 1.

In the three dimensional case Eq. (3.28) takes the form

n+l n+l 1 x n+l n+1 x n+]. n+i
- w + — [e (W -W ) - (W -W ) 3

• j,k,~. j,k,& 4 j+~ ,k,t 3+1 ,k,t j,k,L j-4,k,t j,k,~ j-1 ,k,t

1 Y n+1 n+l y n+1 n+1
+ — [e (W -W ) - e (W -W )]
~ ~~~~~~ j,k+1 ,& j,k,t ~~~~~~ j,k,& j,k-l ,t

1 z n+l z n+l n+1
+ — [8 (W -W ) - 8 (W -W )]

‘~ j,k,t+~ j,k,t+1 j,k,L j,k,t-~ j,k,~ j,k,L-l

(3.28a) 

~~~~~-~~ - - •~~~~~~~~~ __ _ _ _
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x y
where 8 and 0 are defined respectively according to

(3.29) and (3.30) suitably modified , and

z r I P  -
~~~~~~

= 
~ f j,k,i+ l j,k,& (3.31)

max ~ 
- p

j,k,~. j,k,L+1

Also , linear stability analysis [6], shows that in contradistinction to

the two dimensional and cylindrical symmetric cases , in the three

dimensional case the filtering coefficient x has a more restricted

range. Specifically, in the 3-D case we are constrained to use

0 c ~ 2/3.

4. TREATMENT OF BOUNDARY AND INITTAL CONDITIONS

(i) Boundaries That Are Not on The Body

The computation is usually done over a rectangular grid of J x K

net points , where J is the number of grid points in the x-direction and

K is the number in the y or r direction . We choose K in such a way

that the bow shock wave will not cross the upper boundary , k - K (the

lower boundary , k = 1, is usually taken along the axis of symmetry) but

the right hand boundary , j = J. (See sketch.)
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Along BC the boundary conditions are found by extrapolation along

450 lines except that very near to B (2 points along BC) where

the extrapolation is in a direction perpendicular to BC. Along CF

we use the same strategy except that very near F the extrapolation

is in a direction parallel to the body surface. Along AE the

boundary conditions are determined by the symmetry of the flow (zero

angle of attack).

_ _  _ _ _  _ _  

3 
_ _ _

___ ______  ______  
2. 

______  ______

L _ __ __ _  -

7 / N

~~-AX-1 j  

-~~~~~~~~~~~~~~ _ .—---~~----- —---- -~
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If the flow is not symmetric about the x-axis (angle of attack is

not zero) then for the lower boundary we use not AE but a line B’C’

which we treat in the same manner as BC. On the boundary AB we set

fixed the ambient free stream conditions of the steady state flow

which we are trying to model.

(~ii) Boundary Conditions on the Surface of a Two-Dimensional Body

One way of dealing with boundary conditions on a body of arbitrary

shape is to transform the computational grid in such a fashion that the

body surface then coincides with one of the new coordinates. The

difficulty with this is that the finite difference algorithm becomes

more complex and has to be changed to fit each new problem . We chose , on

the other hand , to stay with the convenience of a rectangular mesh. Of

course , we then face the problem that the body surface does not , in

general , pass through grid points. (See sketch on previous page.)

We need to know the components of W at the point ‘Q” (inside the

body) at time tn in order to be able to compute , for example , W at

point “2” (outside the body) at time tn+1 = t~ + At 1~. The points

“a” and “b” were chosen in such a way that the line Qab is normal to

• the body at the point of intersection , “c”. For the purpose of the

discussion in this section only, let f be any component of W or of

the related vector ( p ,  u , v , E ) .  When f stands for either the density,

energy or the velocity in the direction of the tangent to the body at “c”

we find its value at Q by using a “parabolic reflection”. Namely, we

pass a parabola through the points a, b and Q so that the derivative

in the direction of the normal Qab is zero at the point “c”. This is

done by setting

~ 

___________
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f Q = 
b a (L~ - + 

~a 
(4.1)

where ~~ Lb and are the distances of the points “a”, “b” and

“Q” from the point “c”. The values of 
~a 

and 
~b 

are found from

parabolic interpolation among the grid points nearest to them . Thus

* 1( a - l ) ( a - 2 ) f 1 
- 

~ (ct-2)f2 
+ ~~~~~‘) f3 , ( 4 . 2 )

where c*~ y is the distance of point “a” from point “1” , etc .

When f stands for the velocity in the direction normal to the body,

it must vanish at point “c”. We satisfy this condition through a

parabolic extrapolation that yields for f
Q 

the value

f f £ £ f
- 

- a 
+ 
~~ • ( 4 . 3 )

a b a -  b a

(iii) Boundary Conditions on the Surface of a Body of Revolution

The philosophy of the treatment is the same as in Section 4- (ii)

except that where the radius of curvature of the body is finite we use

instead of parabolic reflection and extrapolation linear ones. This

helps with the stability and leaves the overall accuracy unchanged .

Thus we replace (4.l)+(4.2) by (4.4)+(4.2):

£ - L
f~ = f + 

Q 
- 

a (f~ - f ) , ( 4 . 4 )a Lb ‘a a

i
________________ 

-- — — - - --~~~- _ - ~~~-- - -- -~~~- — —- -—-_  
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while (4.3) is replaced by

= - 

~~a 
+ Q~ ~~b - 

~a~
1 (4.5)

Note that even though the finite difference system is solved for

W’ rW , the conditions (4.4) and (4.5) are applied to the physical

qualities W - W’/r.

Near the axis of symmetry, r = 0, we have the problem of W’ = 0

there. To compute W on the axis we use the known values at r = Ar

• r = 2Ar and r = - ~r and interpolate. Finally , note that also on

boundaries away from the body surface , such as BC for example , all

extrapolations are done on W and not on W’ .

• (iv) Initial Conditions

At t = 0 the whole flow field is assigned the free stream conditions.

We chose to nondimensionalize in such a way that both the free stream

pressure and density take on the value of 1. Thus the free stream sound

speed becomes c = I~ .

When we did parametric runs the conditions at t = 0 were set to

the converged solution of a similar run thus saving computation time.
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5. NUMERICAL RESULTS

The n u m e r i c a l  r e s u l t s  were  obt a ined  for  several  problems .

( i)  Steady , two d i m e n s i o n a l , supersonic flow past a circularly blunted

wedge w i t h  a semi-apex angle of 13° , at zero  angle of attack.

(ii) Steady , cylindrically symmetric , supersonic f low past a spherically

blunted cone with a semi-apex solid angle of 13°, at zero angle of

attack.

In both of the above group ings the computations were carried out

for free stream Mach number range of 2 ~ ~ 4 with jumps of

= 0.5 from one run to another. The graphs show the distribution

along the body of the ratio of surface pressure to the stagnation point

pressure and the distribution of the surface local Mach number.

The Mach number distribution over the wedge is shown in Figs. 2 - 6.

The pressure distribution over the wedge is shown in Figs. 7 - 11. The —

pressure d i s t r i b u t i o n  over the  cone is shown in Figs. 12 - 16. The Mach

number distribution over the cone is shown in Figs. 17 - 21. At the  top

of Figs. 2 , 7, 12 and 17 , each at M~, = 2, is shown the body shape over

which the calculation was done .

The surface pressure over the body was computed in two ways: directly

from the finite difference scheme and also by assuming that the body

represents a stream tube over which there is isentropic flow and hence

the pressure over it is related directly to the (local) surface Mach

— - ~~~~~ - _ _ -~~~~~~~~~~~~~
.•- -—. _—_ •--~~~~~~~~~~~~~~~~~~~~ —-._
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numb er. In  Fi g.  12 , fo r  example , we show the p re s su re  as computed by

both approaches. The d a s h e d - l i n e  curve g ives  the  p re s su re  r a t i o  as

o b t a i n e d  d i re c t l y  f r o m  the  f i n i t e  d i f f e r e n c e  equat ion  and the undashed

curve corresponds  to the  “ i s e n t r o p ic ” ca lcu la t ion . I t  is seen t h a t  the

results are nearly identical except near the front of the cone where

the calculations are affected by the small r value. Because of the

agreement  between the two methods , we show on most  grap hs only  p re s su re

d i s t r i b u t i o n  curve.

All the two dimensional calculations were done on a grid of

• 52x55 (J = 52 , K = 55). Running time , when the initial conditions

correspond everywhere to the free stream value is about 25 minutes

(there are some variations depending on Mach number , wedge angle , etc.).

But if , for example , for the M = 2.5 run we use as initial conditions

the numerical solution from the M = 2 . 0  run , then the running t ime

decrease to about 11) minutes. We thus found that the average r u n n i n g

time per case1 for computing the cases M = 2, 2.5 , 3, 3 .5 , 4 is

about 12 minutes.

For the flow around the blunted cone we used a net of 65x64 grid

points and the computation time was roughly the same as in the

cartesian case.

• In order to compare our algorithm with other numerical techniques

we made use of the results obtained from semi-empirical computer programs

based on Russian data for a blunt cone with 10° semi-apex angle at

M = 3. This information is contained in a 1966 AVCO Report
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rio. SR l O-TR-~~o-4~ kritten by I L U .  Kohrs. We ran  c a l c u l a t i o n s  fo r  t h e

same configuration . The comp arison is shown in Fi g. 42. It is seen

that the agreeni-nt is very good.

(iii) In Fi g. 23 we show the results for our blunted wedge but at an

angle of attack of So . The d ist ribut ions are shown for both the

upper and lowe r surf aces .

In all of the ahov€- run’-~ we used a linear Shumari filter , i.e. we

took m = 1 in equation s 3.18 and 3.19. The dissi pa t ion coeff ic ien t

• x was taken to be j/2 in the two dimensional calculations. In the

axisymme tric case the value of x was varied to get best results for

the  s t a g n a t i o n  densi ty and was found to be .9 
~ x < 1.0.

( iv) Finally, we tested our 3-D package by applying i t to the p rob lem

of the supersonic flow past a body composed of a hemisphere

fol lowed by a circular cylinder , at a zero angle of attack.

This allowed us to check how the results obtained, using a 3-U

algorithm compare wi th thos e g iven by a (two-dimensional) axisymmetric

scheme . The compu tational net was 42x40x40. Thus we had 67 ,20 0 mesh

points as compared to the 4,225 poin ts of the 65x65 “2-D” mesh. In

addition , in each mesh point in the 3-D case we have to s tore a

5-vector ( p ,  pu , pv , pw , E) as compared to the 4-vector (p ,  pu , pv , E)

in the axisymmetric case. Thus the storage requirements in the 3-D case

exceed by a factor of 20 ( t w e n t y )  those of the 2-D case. Since this

requirement exceeds the core-memory capacity, we used discs for the
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•~~ss-storage. Here we utilized the hyperbolic nature of the p .d.e. system:

as each field point was computed , its “cube (3x 3x 3) of influence ” was

moved by one mcsh point freeing core-memory s torage for data to be

transf c-red from the disc. The data transfer can be done while the

arithmetic unit carries out the computation. In this manner the effect

of the slow rate of transfer is mitigated. In fact , a typ ical  run took

12 times longer than the corresponding 2-D calculation (all with the

above g iven mesh s i zes ) .  The “improved” efficiency (12 vs. 20) is due

to the coarser mesh (1/40 vs. 1/65). The pressure distribution thus

ob tained agrees well with the axisymmetric results. Typ i c a l l y ,  while

• the stagnation pressure was under-predicted by about 3% in the axi-

symm etr i c ca lcu la tion , it was over-predicted by about 4% in the 3-D

runs . The drag coef f i c ient

- D - 
2 Pstg)11 

P dA
D 2 2~~~ ~~~~~~ 2

~~~x,~ 1~~1TR yM P~ 
.‘ ~stg -ir R

was c a l c u l a t e d  in bo th  cases .  Typical  values , at M,, = 3, are

C D = 0 . 9 8  ( ax i symine t r i c )

C
D 

= 1 .04  (3 -D)  .

We conc lude therefore , that our 3-D algorithm is apparently reliable

and we now plan to app ly it to truly three dimensional flow , i.e. in

the case of non-zero angle of attack.

ACKNOWLEDGEMENT : Many thanks are due to Ms. Dora Raber who

carr ied  out the s c i e n t i f i c  p rogramming .

~~~~~ ~~—~~~~—.~~~~~~~~ -—-- -- —T — T L : : L~~J ----rn--j - 
-:~~--- - -~

‘-—-- •--------



r~~’~ ’
- 25 -

REFERENCES

[l~~ Dorodnit~ yn , ~\.A. “On a Method of Numer ical Solution of Some

~on1 ine ar Problems of Aerod ynami cs” Proc. 9th Interna tiona l
Con ~~r~-s s  on Applied Mechanics , Bruss els , vol.1 (1957), p. 485.

~~~) Belotserkovskii , O.M.

Doki . Akad . Nank SSSR , 113 (1957), Pp. 509-512.

[]  Garabedian , P.R.

J . Math. Phys., 36 (1957) , Pp. 192-205.

[3] Lax , P.D. and Wendroff , B.

Comm . Pure App i. Math., 17 (1964), pp. 381-392.

[4] Richtmyer , R.D. and Morton , K.W. “Fini te Difference Methods
for Ini ti al Value Probl ems” In terscience Publications , 196”).

[5] Zwas , G.

Num er. \lath., 20 (1973), pp. 350-355 .

[6] Harten , ~\. and Zwas , G.
J. Eng. Math., 6 (1972), pp. 207-216.

[7] Abarbane l , S. and Gottlieb , D.

Math. Comp., 27 (1973), pp. 505-523.

[8] Goldber g, M . and Abarbanel , S.

Math. Comp., 28 (1974), pp. 413-447.

[9] Abarbanel , S. Gottlieb , D. and Turkel , E.

— 
SIAM J. Appi. Math., 29 (1975) , pp . 329-35 1.

[10] Turkel , E. Abarbanel , S. and Gott lieb , D.

-
• 

J. Comp . Phys. , 21 (1976), pp. 85-113.

[11] Burstein , S.Z. “High Order Accurate Difference Methods  in
Hydrod ynamics ” Nonlinear PDE , ed. F.Aines , Academic Press ,

N.Y. (1967) , pp. 279-290.

[12] Burstein , S . Z .  and Mi r in , A . A .
J. Comp. Phys., 5 (1970), pp. 547-557.

[13] Vliengenthart , A.C.

J. Eng. Math., 4 (1970), pp. 341-348.

I
_ _  -



( Mach Nci~2O

I I I
2.80-  —

2.40 — —

~~~~~~ 2.0O
— —

~ 1.20 — —

C.) 
_ _ _ _ _

Q80 — —

C

• 0.40 —

0000.00 Q20 0.40 0.60 0.80
Length along x axis

Fig. 2

I,
hriL~. • •  - .• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . • ~~~~~~~~~ —~~-—-- --



Cartesian Coordinates
Mach No. ~~~

I I I I

2.80 — -

240 — —

~~2.00 - -

1

160 -

‘ 4 =

040~f J  -

aoo I I I _ _

0.00 0.20 Q40 0.60 0.80
Lengt h along x ~ is

Fig. 3 



- - -~ -~ -• --~ - - -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-~~--•~~~ -

Cartesian Coordinates
Mach No. p3.0

I I I
2.80 — —

2.40 — —

• ~~2.00 — —

1.60 — —

E
3
C

~~ I.20 - —
a

0.80 — —

C

-J

-

J 
:: 

I I I 

-

Q00 0.20 0.40 0.60 Q80
Length along x axis

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~ 
•



-

~~~~

Cartesion Coordinates
Mach N~.~3•5

I I 
—

2.80 - —

2.40 - —

~~2.00 - -2

160 - -

I
.C l.20 - —

0.80 — -

0.40 -

000 I I _ _ _

0.00 0.20 040 060 020
Length along x axis

Fig. S



r

• Cartesian Coord inates
Mach No.’40

_
I I I

2.80 —  —

2.40 - —

j 200 -~~~ 
—

.2
-

~~ l.20 — —

0.80 —  —

0.40 —

000 I I I _ _ _

0.00 0.20 0.40 0.60 0.80
Length along x axis

f±g~~~~



Cartesian Coordinates

1.00 1 1 I

Q80
_

\ 

—

~~0.6O - -

•6 I
’

•

~~Q40 — —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.00 0.20 0.40 0.60 0.80
Leng th along x axis

~~g . 7

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



-
~~ --~~~~~~~~~ . 

—~~~~——~~
----

~~~
—

Cartesian Coordinates
Mach No. :25

~oo -I

0.80 —

V

0.60 — —

~~0.40 — -

0.20 — 

I _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _000000 0.20 040 0.60 020 100
Length along x axis

Fig .  8



-~ •-__ --- • ~~~~~~~~

Cartesian Coordinates
Mach No. :3.0

1 .00 
I

~~0.80 — —

V
2

~~ 0.60 — —

~~0.40 — 

~~ 
—

a-

C.)

0.20 - ~
4)

0.20 040 060 0.80 1.00

Length along x axis

Fi g. 9

_____________________ __________________________________ ____________ 

I ~-
- 

- - - -~~~~~~-- --- - - --~~~~~~~ - 



Cartesian Coordinates
M~~h No. =35

:\
‘ I 

—

a60 - -

~~040~~~~~
\ 

-

0.20 —

0.00 ~~~I I I I 
_ _

0.00 0.20 0.40 060 0.80
Length along x axis

Pig. 10

_ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  —~~~-



Cartesian Coordinates
Mach No.z4.0

1.00 I I

0.80 -\~~ -

~~0 .6 0 -\  -

~~0.40 - —

0.20 -

000 I I I _ _ _ _

0.00 0.20 Q40 0.60 0.80 1.00
Length along x axis

Fig. 11



— — —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Cylindrical Coordinates

I I I
1 .40 - —

1.20 — —

~~~~~~~~~ -~ —I .~J~J

V
0

a-f

.20.20 — c —
0
U, 

_ _ _

2
‘—P 1 I I I _ _ _ _ _

00%.oo 0.20 0.40 0.60 080
Length along x axis

_ _
_____

_ _  _  -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1JI



Cylindrical Coordinates
Mach No.~2.5

I I I
1.40 - -

1.20 — —

1.00 - -

V
2

~~0.80 — —

~~0.60 — —

0.40 — —

0.20 — —

000 I I _ _

• 0.00 0.20 0.40 0.60 0.80
Length along x axis

Fig .  13

__________________________________________ 
-~~ -. _ _ _ _ _ _ _ _ _ _ _



Cylindrical Coordinates
Mach No.: 30

~1 I I

140 - —

120 - —

1.00 - -

• .0

~~0.80 - —

.

~~

~~0.60 - -

0.40 — —

0.00 0.20 040 0.60 0.80
Length along x axis

Fig. 14

j

-

~

—- - - -- —-

~

-- - -

~

- -

~

- - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Cylindrical Coordinates
Mach No’35

I I I I
1.40-  -

1.20 —

1.00 - —

.
~~~

l

• 2 080 _ 
—

I

~~0.60 — —

040 —  —

0.20 .—~~~~~~ 
—

Os

~~~~~~~~I I _ _0.0Q000 020 040 0.60 0.80
Length along x axis 

— -- -~ .-- .•— - -~~~~~----• —• ~~—



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  • —
~~~~~~~~~

Cylindrical Coordinates
Mach No.:4.0

l.40 
I I I 

—

1.20 —  —

1.00 —  —

g
o80 - —

~~0.60 — —

0.40 — —

0.20 —  .2 —

c15 —~~~~~-~
--—---.

~~~~~~~

•

_ _  _ _ _  
I I I _ _0.0Q000 0.20 040 0.60 0.80 •

Length along x axis

Fig. 16

I



/7 Cy lindric&

I I I I
2.80 - —

2.40 — —

• 
~~aoo-

° 1.60 - / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

l.20 -
_/ 

-

0.80 — / —

C

000 0.20 0.40 0.60 0.80
Length alongxax is

Fig .  17

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Cylindrical Coordinates
Mach No.:25

I I I
2.80 — —

2.40 — —

2.00 —

g 1.60 - -

~~~l20-
/ 

-

~~0.80
_/ 

—

0.40~/~~~ —

000 
12 i 

_ _ _ _ _ _ _  _ _

0.00 0.20 0.40 0.60 0.80
Length along x axis

Fig. 18

I
L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~~~~~~~~~ ---—



Cylindrical Coordinates
Mach No.:3.0

I 1 I I

I’ := =

~aoo -

~~ L60 — —

i
~~l20 — — j

~~0.80-/ —

0.00 0.20 0.40 0.60 0.80
Length along x axis

Fig. 19

_ _ _ _  
____ 

I



Cy lindrical Coordinates
Mach No.:3.5

I I
2.80 - —

240 - —

V 200 — —

2

—

.0

~~ l.20 — —

0.80 — /

~ 
—

/ 0
0.40 1 ~ 

—

f C f l

2
I — I  I I I _ _ _

0.20 0.40 0.60 020
Length along x axis

Pjg. 20

• 
_ _~~ _ _ _ 1 

——- •~~~~~~~~~~~ - • ~~~~— • -- - - - _ _ _



Cylindrical Coordinates
Mach No. :40

I i i
I I

2.80 — —

240 —

2.00 - -

~~I.60 — —

I
E3 1.20 — —

~~ 0.80 — —

040 —

000 I _ _

0.00 020 0.40 • 
0.60 0.80

Length along xaxi s

i~ig. 2 1

-

~~~

-- 

~~~- -- -——~~~~~~~~~~~~~~~ ~~~~• - ——  -~~~~~~~~~ --•~~~~~~~~———- -•~~



~~~~~~~~~~~ylinZCo~ d~ otes

1.40 —  —

120 — —

- — —  Finite difference
Finite difference

ioo — - + Isentropic relation —
•... l BM Program and2 Russian data.

g 0.80 -~ 
—

°
•

-

040 —  —

-J \\
o

0 2 0 — S  —

U, 
—

I—-.——- ~~~~~~~~~~~~~~~~~~~~
_

~~~~~.— — — .— — ~~~~~~—~~~~~ — .•~•.__I

£

oily’ 
I
~~ I I I
020 040 0.60 0.80

Length along x axis

COMPARISON OF THE PRESSURE DISTRIBUTION ALONG

A BLUNTED CONE AS COMPUTED BY FINITE—DIFFERENCE

MET HOD (DASHED CURVE ) WITH SEMI—EMPIRICAL

FORMULA (OPEN CIRCLES ).

• 3 , SEMI—APEX ANGLE = 3.0°



_ _ _ _ _  _ _ _ _  - --- -_ —- - ~~~ -- - - - ------ - - -

Cartesian Coordinates
Mach No. p3.0

Angle of Attack:5
1.00 — I — 

I I I

0.80 —

• ~~~~~~~~~~~~~ -

a- 
0.20 -

• 0.00 0.20 0.40 060 0.80
Length along x axis

Fig. 23a

— - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_________________________  _ _- - - -

Cartesian Coordinates
Mach No. :30

Angle of Attack 50

I — I I I
2.80 — —

2.40 — —

>~200 — -

~ 
The Upper Part

a. a- / — 
— — —~ 

— — — —
.~~L60 — I —
0 O C /// The Lower Part

!~ I.20 - / ‘~~~T

0.80 —

0.40 -, —

I
I

• 
.00 0.20 040 0.60 0.80

Length along x axis

F i g .  23b

L _ _  _ _ _ _ _ _ _  - _ _  
_ _ _ _ _



_______________________________ ---U——-.--

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~ c ~~~~~~~~~~~~~~~~~~~~~~ 

-

RE~QR.~ DOCUMENTATION READ INSTRUCTIONS
_____ - - BEFORE COMPLETING FORM

~ L~ 
GOVT ACCESSION NO. 

,
zECIPIENV5 C A T A L O G  NUMBER

- -  
I T I T L E  (~~ -

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --— f IINAL ~~~~~~~

~ TR !UMERIc~ . ~~~~~~PUTATIONS OF .~UPERSONIC !LOW PAST 15 Apr~~~~ 72-3O Ju~~a76 
)

I ~LU!~~~~ IJIES .~~ 
- ‘ 6. P FORMINGORG. REM Y ~~V BrR~~

-

• L L T ~~~ ’J~~ ~~~~~~~~~~~~~~~~~~~~~ S. CONTRACT ON GRANT N.JMBER(.)

/ - I SAUL VABARBANEL /
AFO’SR’~~~237~ 72..H

9 PERFORMING OR GANI &A TI ON NAM E AND ADDRESS t O. PROGRAM ELEMENT. PROJECT . TA SK- 
~~ - - AREA I WORK UNIT NUMBERS

DEPARThENT OF MATH~~1ATICAL SCIENCES -/
~ 

978 0 / ~)RMAT AVIV , ISRAEL —--v 6110 F
I I  CGN TROLLING OFFICE NAME AND ADDRESS - NT D A T E

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA /, 1977
BLDG 410 ---- i~~. NUMBER OF ~Ø~s ,~~~BOLtING AIR FORCE BASE, D C 20332 49 ~~~~~~~~~~~14 MONII’ORING AdE NCY NAME S AOONESS(SI dSfl.ron~ ito. ControUin~ 

01(1cc) IS. SECURITY CL . m~
UNCLASSIFIED -

IS.. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

15 DISTRIBUTION STATIMSNT (of thu Rspo,t)

Approved for public release; distribution unlimited.

17. OIlY NISUTION STATEMENT (.1 f l .  aSa*i’on* wfttod In block 26. H ~~tf .c.iI f t.., R.p ott) ——

IS SUPPL EMENTARY NOTES 
-
~

a.
19 KEY WORDS (C.nthI u. on ,.v ta~ Ildi If n.c.. ..~ ond ldontIIy by block rnonb•r)

NUMERICAL METhODS
FINITE DIFFER~JCE SCH~(ESSUPERSONIC FL~~JS
BLUNT BODIES

.~~~~ AB ST RACt  (CcnIIm 1 ,o,su. .I~~ If n.c....v ond SdsntIfr by block no.b.r)

Methods for computing numerically the flow past blunted bodies travelling at
supersonic speed are developed , using finite difference schemes . The algorithms
were constractad -to deal with 2-D axisyaoetric and 3-D configuration. Various
con! iguratious were investigated and the flow field around them computed .
Comparison with available semi-empirical results for blunted cones at Mach numbei
3 shows good agreement. The 3-D algorithm was applied to an axisynaetric config .
urat ion and the results thus obtained show good agreement with the axisymeetric
calculation. All the calculations are for the inviscid gas-dynamic case.ç

DD , ‘,, 1473 EDITION OF I NOV 61 IS OBSO L ETE UNCLASSIFIE D
SECURITY CLA SS IJ ICAY ION ~~~ THIS PAGE (M~.ød.~~ ~ .,

-

~

- . -~- •
• . I~~~~~~~ -j ~~, -- ~ I4...~ ‘.

~~~~
- ‘

____________ - ~~~~ ~~~~~~~~~
•- 

~~~~~~


